

Energy research Centre of the Netherlands

European standardisation and regulatory developments in relation to release from monolithic materials - stabilised waste and cement-based construction products - to soil and groundwater- an update.

ECN, Petten, The Netherlands; DHI, Hørsholm, Denmark; VDZ, Dusseldorf, Germany

2nd Wshop: Mechanisms and modeling of waste/cement interactions, October 12-16, 2008, Le Croisic, France

OUTLINE

- Regulatory needs from the Construction Products Directive (CPD)
- Regulatory needs from waste disposal (EU Landfill Directive)
- Standardisation developments (horizontal standardisation)
- Example results of testing and modelling for different types of cement mortars and stabilised wastes
- Conclusions

CONSTRUCTION PRODUCTS DIRECTIVE (89/106/EEC)

The European Standardization Organisation CEN mandated by DG Enterprise to prepare test methods to assess potential release of dangerous substances to soil and groundwater (Essential Requirement 3 on Health and Environment)

CEN/TC 351 installed to answer the needs in this mandate. This TC is working with a number of task groups to address specific questions (Impact Soil & Groundwater, Impact indoor air, analysis of content, sampling, barriers to trade, WT, WFT and FT).

Substantial progress has been made in providing the necessary horizontal test methods (applicable to different fields or product types) to generate both a sufficiently scientific based approach as well and an economic and practical approach avoiding unnecessary duplication of work.

MONOLITHIC WASTE IN THE LANDFILL DIRECTIVE

EU Landfill Directive - ANNEX II : no provision for stabilised monolithic waste for lack of a proper scenario description (2002)

For the time being Member States asked to deal with this topic at national level – work still ongoing at national level Key issues:

- Not only transport by diffusion (too simple assumption), but solubility control (particularly for trace constituents)
- Hydrology still insufficiently known (monolith saturated? Infiltration rate?)
- Washout of soluble salts is undesirable as it affects the stability.
- Carbonation is important as it affects the release of substances considerably.

CONCERNS IN RELATION TO LEACHING TEST USE AND INTERPRETATION - WHERE DO WE STAND NOW?

- Far too simple tests used in current regulations
 - regulations are not changed so rapidly, but US-EPA is adopting pH dependence test, percolation test and tank test in SW 846 (EPA bible)
- Too limited focus on the fundamental questions to be answered
 - definite improvements made
- Too many ways of test data representation
 - still a big source of confusion
- Tools applied often too simple to address complicated issues
 - hierarchy in testing is now slowly adopted; Kd approach unsuitable for proper impact assessment on the long term – mechanistic approach needed with all complexity of the real world (e.g. different release controlling phases and hydrological aspects)

CONCERNS IN RELATION TO LEACHING TEST USE AND INTERPRETATION - WHERE DO WE STAND NOW?

- Too limited relation of test conditions with the actual problem (e.g. L/S)
 - high L/S batch unsuitable to assess pore water, first fraction column test close indicator for granular material and after size reduction also suitable for estimation of pore water in monolithic materials
- Too limited use and relevance of the vast amount of leaching test data generated annually in industry and research (missing parameters)
 - still a big issue, unnecessary protection of data, database needed!!
- Key information relevant to the outcome and possible interpretation of a leaching test often not reported (pH, EC, Eh, DOC)
 - majority still restrict themselves to regulatory required info

SOME IMPROVEMENTS BUT STILL A VERY STRONG NEED FOR HARMONISATION OF LEACHING TEST METHODS, DATA COLLECTION AND DATA EVALUATION!

BASIC CHARACTERISATION TESTS

pH DEPENDENCE

TEST: BATCH

TS 14429 or

CONTROLLED

MODE ANC

COMPUTER

TS 14997

GRANULAR MATERIALS

MONOLITHIC MATERIALS

Same as for granular materials

Chemical speciation aspects

Time dependent

٩

TANK LEACH TEST (MONOLITH) and COMPACTED GRANULAR LEACH TEST (in progress)

PERCOLATION

LEACHING TEST

(TS 14405) or

ISO 21268-3

EN 12920

aspects of release These basic characterisation tests have a much wider applicability

than the field of waste, where they were initially developed!

CONTROLLING FACTORS

- Mineral precipitation/dissolution
- Hydrated ironoxide sorption
- Organic matter interaction (dissolved and particulate)
- Clay sorption
- Solid solutions

MODELING RELEASE

- pH dependence
- Percolation test
- Tank test
- Large scale tests and field measurements

VALIDATION/VERIFICATION

- Lab test data
- Lysimeter scale data
- Field percolate or profile data

ECN Leaching of cement mortars, CKD, stabilised waste and Roman cement

Besides Cr similar info available for some 70 mortars and >25 elements

- pH dependence leaching test on granular material or size reduced monolithic material for chemical speciation purposes

- measurement of release from granular materials in a percolation test (column) or from monolithic specimen in a diffusion test ("tank test" with leachant renewal)

- speciation modelling using LeachXS, a database-coupled version of the modelling environment ORCHESTRA, to identify relevant mineral phases (SI-indices)

- refined prediction of leaching behaviour in a pH dependence test based on the selected minerals and other relevant phases (Fe, Al, DOC, etc) providing a chemical speciation fingerprint (CSF)

- the resulting CSF is used as input for the chemical reaction/transport modelling to describe the release from a percolation test or from a tank test

- CSF's are also used to model the field scenarios with external factors considered (carbonation, oxidation, biologically mediated reactions) and more realistic estimates of infiltration.

ECN Input data for modeling pH dependence test

Material	terial Cement stabilised MSWI fly ash - pH dependence test TS14429							
Reactive fraction DOC	0.2	0.2 HFO			1.000E-05 kg/kg			
Sum of pH and pe	13.00	SHA			5.000E-04 kg/kg			
L/S	10.0000		Percolation mat	erial	Cement st	abilised MSWI	fly ash - TS144	05 Percolation test
Clay	0.000E+00 k	g/kg	Avg L/S first per	rc. fractions	0.2222	l/kg		
DOC/DHA data	рН	[DOC] (kg/l) DHA fraction		[DHA] (kg/l)	Polynomial coeficients			
	1.00	4.000E-06	0.20	8.000E-07		C0	-6.006E+00	
	3.60	3.200E-06	0.20	6.400E-07	C1		-7.827E-02	
	4.78	3.100E-06	0.20	6.200E-07	C2		4.355E-03	
	6.06	1.900E-06	0.20	3.800E-07	C3		5.802E-05	
	7.28	2.400E-06	0.20	4.800E-07	C4		0.000E+00	
	7.80	2.200E-06	0.20	4.400E-07	C5		0.000E+00	
	9.50	3.100E-06	0.20	6.200E-07				
	10.30	2.300E-06	0.20	4.600E-07				
	11.69	3.000E-06	0.20	6.000E-07				
_	14.00	4.000E-06	0.20	8.000E-07				
Reactant concentrations								
	Reactant	mg/kg	Reactant	mg/kg	Reactant	mg/kg	Reactant	mg/kg
	AI+3	6.056E+03	CrO4-2	9.690E+00	Mn+2	1.750E+02	SeO4-2	4.600E-01
	H3ASO4	1.450E-01	Cu+2	3.650E+02	M004-2	7.700E+00	H4SiO4	3.556E+03
	H3BO3	5.947E+01	F-	1.904E+03	Na+	2.563E+04	Sr+2	2.060E+02
	Ba+2	1.933E+01	Fe+3	7.393E+01	INI+Z	9.290E+00	VO2+ 70	5.800E-01
	Br-	8.338E+02	H2C03	1.500E+04	PO4-3	4.740E+00	Zn+2	8.015E+03
		8.302E+04	N+	3.381E+04	PD+2	9.551E+02		
	C0+2	1.782E+02		2.452E+01	504-2 ShiQuie	1.066E+04		
Selected Minerals	CI-	5.300E+04	ivig+2	3.9032+03	-o[UU]0-	4.920E+00		
				AA lonnito		Corkito		Strontionito
				AA_Jennite AA Magnesite				Wairakite
				AA_Magnesite		CSH ECN	Pb2V207	
				AA Syndenite			Ph3IVO412	
$\Delta \Delta $				AA Tricarhoaluminate		Fe Vanadate	PbCrO4	
						Fluorite	PbMoO4[c]	
AA 3CaO Fe2O3 CaCO3 11H2O[s] AA Gibbsite				BaSrSO4[50%Ba]		Laumontite	Plaummite[1]	
AA 4CaO Al2O3 13H2OIs] AA Gypsum				Cd[OH]2[A] Manganite Rhodochrosite			9	

Minerals in bold are ultimately identified in significant proportion

Energy research Centre of the Netherlands

Modeling of pH stat data of cement stabilised MSWI fly ash

Red dots: pH dependence test data; Blue triangle: percolation test data (first fractions); Red line: model result for L/S=10; Blue dotted line: model result for L/S=0.2 (Calculation time : generally ~ 1 minute; graphical display in few seconds)

Partitioning in cement stabilised MSWI fly ash

Partitioning provides insight in release controlling phases, which are of relevance for prediction of long term behaviour

Energy research Centre of the Netherlands

Chemical reaction/transport modeling

- Based on the chemical speciation fingerprint (CSF) of a material (minerals, reactive sorption phases Fe oxide and Al-oxide surfaces, clay, organic matter dissolved and particulate) the transport in a percolation experiment is predicted.
- Additional parameters are to be provided:
 - Column dimensions
 - Flow rate
 - Porosity
 - Density
 - Dual porosity parameters (fraction of stagnant phase)
 - Interaction parameter for stagnant and mobile phase
 - Release of reactive fraction of DOC (decay function)
 - Composition of leachant

ECN Input for chemical reaction/transport

Case	Cement stabilised MSWI	fly ash 2100 Pe	rcolation TS14405						
Solved fraction DOC	0.2		Density			2 kg/l			
Sum of pH and pe	15.00		Initial pH (solid)		12.15				
Clay	0.000E+00 kg/kg 1.000E-04 kg/kg		Initial pH (liquid)			7			
HFO			Column length	30 cm					
SHA	2.000E-04 I	Rel. stagnant volume			15 %				
Porosity Fraction	0.35		Eff. diffusion dist.			3 cm			
[DOC/DHA data]	DHA data] L/S [DOC] (kg/l)			fraction	[DHA] (kg	/I) Curve fitting coeficien	ts		
	0.16	9.580E-05	5	0.20	1.916E-0	05	Q0	2.064E-05	
	0.28	8.140E-05	5	0.20	1.628E-0	05	Q1	1.200E+00	
	0.63	5.450E-05	5	0.20	1.090E-0	05	Q2	2.000E-07	
	1.18	1.240E-05	5	0.20	2.480E-0	06			
	2.18	5.200E-06	5	0.20	1.040E-0	06			
	5.19	2.000E-06	3	0.20	4.000E-0	07			
-	10.00	1.300E-06	5	0.20	2.600E-0	07			
Reactant concentration	ons		-						
	Reactant	mg/kg	Reactant		mg/kg	Reactant	mg/kg	Reactant	mg/kg
	AI+3	4.456E+03	CrO4-2		9.690E+00	Mn+2	1.750E+02	SeO4-2	4.600E-01
	H3AsO4	1.450E-01	Cu+2		3.650E+02	MoO4-2	7.700E+00	H4SiO4	3.556E+03
	H3BO3	5.947E+01	F-		1.904E+03	Na+	2.563E+04	Sr+2	2.060E+02
	Ba+2	1.933E+01	Fe+3		7.393E+01	NI+2	9.290E+00	VO2+ 7= : 0	5.800E-01
	Br-	8.338E+02	H2CO3		1.000E+04	P04-3	4.740E+00	Zn+2	8.015E+03
		8.362E+04	K+		3.381E+04	PD+2	9.551E+02		
		1.782E+02			2.452E+01	504-2 ShiQi lik	1.000E+04		
Initial water concentry	U-	5.350E+04	ivig+2		3.903E+03	SD[OH]6-	4.920E+00		
Initial water concentra	ations Depetert		4			14			
Selected Minorals	Reactant	all	I	.000E-09	IIIO	DI/1			
			3CaO Ea2O3 CaCO3			Tricarboaluminate	Forribydrito		
2CaO_AI2O3_01120[5]	120[6]		3CaO_Fe2O3_CaCO3_1	11120[5] F			Ferrinyunte	Pbivi004[c] Phodochrosite	
2CaO_AI2O3_3IO2_01	120[3]					BalSCr104[77%SO4]	Magnesite	Strontianite	
$12C_{2}O_{1} = C_{2}O_{2}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1$			4CaO_AI2O3_1312O[3] 4CaO_Fe2O3_13H2O[3]		ennite	BaSrSO4[50%Ba]	Magnesite	Tenorite	
13CaO_Al2O3ICa[OH12]0_5_[CaCO3]0_5_11_5H2O[s] 40aO_1 e203_13H20			Al[OH]3[am]	N	lagnesite	Ca3[AsO4]2.6H2O	Ni[OH]2[s]	Willemite	
13CaO_Al2O3_6H2O[s] Anbvdrite			Anhvdrite	P	Portlandite	CaMoO4[c]	Ni2SiO4	Zincite	
3CaO_Al2O3_CaCO3_11H2O[s]			Brucite	S	Silica[am]	Cd[OH]2[C]	PbIOH12IC1	Lineito	
3CaO Al2O3 CaSO4	12H2O[s]		Calcite	S	Svnaenite	Cr[OH]3[A]	Pb2V2O7		
3CaO Fe2O3[Ca[OH]2]0 5[CaCO3]0 5 11 5H2O[s]			CaO Al2O3 10H2OIs1	Т	obermorite-I	Cu[OH]2[s]	Pb3IVO412		
3CaO Fe2O3 6H2O[s]			CO3-hydrotalcite	Ť	obermorite-II	Fe Vanadate	PbCrO4		

WECNMulti-element prediction of percolation data for size-reduced cement stabilised waste

Low Liquid to Solid ratio data of relevance for estimating pore water composition

Energy research Centre of the Netherlands

Chemical reaction/transport modeling of monolith

- Based on the chemical speciation fingerprint (CSF) of a material (minerals, reactive sorption phases Fe oxide and Al-oxide surfaces, clay, organic matter dissolved and particulate) the transport in a tank leach test is predicted.
- Additional parameters are to be provided:
 - Specimen dimensions
 - Liquid to area ratio
 - Porosity
 - Density
 - Tortuosity (derived from soluble salt release)
 - Cell thickness for modeling
 - Reactive fraction of DOC (pH dependence)
 - Composition of leachant

ECN Input for chemical reaction/transport

Case Cement stabilised MSWI fly ash DMLT-PLR										
Solved fraction DOC	0.2 S I		SHA 1.000		kg/kg					
Sum of pH and pe	13.00	13.00		0.4	0.4					
Clay	0.000E+00 k	g/kg	Density	2.403333333	kg/l					
HFO	1.000E-04 k	g/kg	Tortuosity	1.7						
Refresh data	Included	Fraction	Time (h)	Volume (I)	Flowspeed (I/sec)					
	TRUE	1	6.00000	4.000E+00	0.000E+00					
	TRUE	2	24.00000	4.000E+00	0.000E+00					
	TRUE	3	54.00000	4.000E+00	0.000E+00					
	TRUE	4	96.00000	4.000E+00	0.000E+00					
	TRUE	5	216.00000	4.000E+00	0.000E+00					
	TRUE	6	384.00000	4.000E+00	0.000E+00					
	TRUE	7	864.00000	4.000E+00	0.000E+00					
	TRUE	8	1536.00000	4.000E+00	0.000E+00					
[DOC/DHA data]	рН	[DOC] (kg/l)	DHA fraction	[DHA] (kg/l)	DHA] (kg/l) Polynomial coeficients					
	1.00	3.549E-06	0.35	1.242E-06		C0	1.496E-06			
	3.60	3.200E-06	0.25	8.000E-07		C1	-2.586E-07			
	4.78	3.100E-06	0.20	6.200E-07		C2	1.400E-08			
	6.06	1.900E-06	0.20	3.800E-07		C3	2.255E-10			
	7.28	2.400E-06	0.20	4.800E-07		C4	0.000E+00			
	7.80	2.200E-06	0.20	4.400E-07		C5	0.000E+00			
	9.50	3.100E-06	0.20	6.200E-07						
	10.30	2.300E-06	0.20	4.600E-07						
	11.69	3.000E-06	0.25	7.500E-07						
	14.00	3.549E-06	0.35	1.242E-06						
Reactant concentration	าร									
Reactant	mg/kg	Reactant	mg/kg	Reactant	mg/kg	Reactant	mg/kg			
Al+3	4.600E+03	CrO4-2	9.690E+00	Mn+2	1.750E+02	SeO4-2	4.600E-01			
H3AsO4	1.450E-01	Cu+2	3.650E+02	MoO4-2	7.700E+00	H4SiO4	3.556E+03			
H3BO3	5.947E+01	F-	1.904E+03	Na+	2.563E+04	Sr+2	2.060E+02			
Ba+2	1.933E+01	Fe+3	7.393E+01	Ni+2	9.290E+00	VO2+	5.800E-01			
Br-	8.338E+02	H2CO3	1.000E+04	PO4-3	4.740E+00	Zn+2	8.015E+03			
Ca+2	8.362E+04	K+	3.381E+04	Pb+2	9.551E+02					
Cd+2	1.782E+02	Li+	2.452E+01	SO4-2	1.066E+04					
CI-	5.350E+04	Mg+2	3.903E+03	Sb[OH]6-	4.920E+00					
Initial water concentrat	tions									
	Reactant al		1.000E-11	mol/l						
Selected Minerals										
AA_2CaO_Al2O3_8H2O[s]			AA_Calcite		Analbite	Pb[OH]2[C]				
AA_2CaO_AI2O3_SiO2_8H2O[s]			AA_CaO_AI2O3_10H2O	[s]	BaSrSO4[50%Ba]	Pb2V2O7				
AA_2CaO_Fe2O3_SiO2_8H2O[s]			AA_CO3-hydrotalcite			Pb3[VO4]2				
AA_3CaO_Al2O3[Ca[OH]2]0_5_[CaCO3]0_5_11_5H2O[s]			AA_Fe[OH]3[microcr]		Cr[OH]3[C]	PbCrO4				
AA_3CaO_Al2O3_CaCO3_11H2O[s]			AA_Gibbsite		Cu[OH]2[s]	PbMoO4[c]				
AA_3CaO_Al2O3_CaSO4_12H2O[s]			AA_Gypsum		Fe_Vanadate	Rhodochrosite				
AA_3CaO_Fe2O3_CaCO3_11H2O[s]			AA_Magnesite		Fluorite	Strontianite				
AA_4CaO_Al2O3_13H2O[s]			AA_Portlandite		Laumontite					
AA_AI[OH]3[am]			AA_Syngenite		Manganite Willemite					
AA_Brucite			AA_Tricarboaluminate		Ni[OH]2[s]					

Energy research Centre of the Netherlands

Multi-element prediction of tank test data for cement stabilised MSWI fly ash

Energy research Centre of the Netherlands

SCENARIO DESCRIPTION: IDENTIFICATION OF PROCESSES IN STABILISED WASTE DISPOSAL

Integration of test results from lab, lysimeter, core sample leaching, field percolate and modelling

Red dots: pH dependence test TS14429 fresh Blue square : percolation test TS14405 fresh Purple triangle: Aged core material exposed TS14429 Green diamond: Aged core material sealed TS 14429 Open triangle: Core samples EN 12457-2 Open diamond: Core samples EN 12457-2

Red line: model prediction fresh Purple broken line: model exposed cell Green dotted line: modeling sealed cell

The questions to be answered for cement stabilised waste disposal, radioactive waste disposal and issues related to the use of "alternative" materials in construction are basically very similar.

The release controlling processes are not very different between the three fields and exchange of knowledge between the fields can be mutually beneficial.

It needs to be recognised by industry and by regulators in the waste and construction sector that major and minor elements control release processes and as such testing only for the target contaminants will not lead to acceptable long term solutions. On the other hand focusing only on major elements is not solving the problem either.

The approach presented here aims at proper testing to assess as far as possible intrinsic properties of the products to be tested, mechanistic multi-element modelling taking into account multiple release controlling phases and ensuring adequate verification of modelling output to validate as good as possible the predictions

This means simulation of the field in a lab test is not a way to go, as results can not be used in the next case

Standardisation of adequate test protocols is highly beneficial as it improves comparability and transparency of data. A multiplicity of test to address the same question is not very useful.

The multi-element approach shows quickly, where main gaps in the knowledge are (incomplete prediction, lack of thermodynamic data).

The proposed set of test methods (pH dependence CEN/TS14429, the percolation test on crushed material CEN/TS14405, and the tank leach test – DMLT-PLR) provide the necessary information for modelling release and are more and more widely accepted.

Additional parameters are reactive iron-oxide surfaces, reactive organic matter (dissolved and particulate), clay and, when relevant reducing capacity.

The characteristic leaching behaviour of cement-based products forms a sound basis for subsequent chemical reaction transport modeling.

Cement mortars worldwide prove to behave very systematic with relatively narrow bandwidth for most elements. Cr being the main exception

The proposed testing regime for characterisation of stabilised waste has been shown to be useful in addressing various question related to the disposal and even the potential use as a construction material.

This type of characterisation will provide the basis for answering the question by regulators if a certain material use will pose unacceptable risk or not.

To address the complex issue of environmental impact evaluation of long term behaviour too simple approaches lead to poor management decisions

Good progress has been made in understanding the processes in monolithic materials (Meeussen presentation)

Development of LeachXS as an expert system comprised of methodology guidance, databases of laboratory and field data, geochemical speciation modeling tools, and multiple scenario simulations, will provide a very useful tool for various end-users.

ACKNOWLEDGEMENT

This presentation is based on work in ECRICEM (Consortium consisting of HOLCIM, NORCEM, VDZ, ECN and DHI) and ECO-Serve, work on stabilised waste in the context of the Sustainable Landfill project (Vereniging Afvalbedrijven, VA ; the pilot study at VBM, Maasvlakte, NL), studies for the Dutch Ministry of Environment (VROM) and for Umweltbundesamt (Berlin) in cooperation with VDZ(Dusseldorf, D) and DHI (Horsholm, DK).

For the development of LeachXS the cooperation with Vanderbilt University (Nashville, USA) and DHI (Denmark) is acknowledged

Main goal: easy access to large datasets and advanced data processing for decisionmaking and presentation Energy research Centre of the Netherlands

www.ecn.nl

DEVELOPMENT OF STANDARDS

European:

Granular waste compliance leaching test – EN 12457 1- 4 validated CEN TC 292 WG2

Monolith compliance leaching test – Tank leach test 3 days (in development) CEN TC 292 WG2

pH dependence leaching test – 2005 TS 14429 CEN TC 292 WG6

Percolation test – 2005 TS 14405 CEN TC 292 WG6

NWIP Dynamic leach test (similar to NEN 7345; in preparation) CEN TC 292 WG6

International:

Batch tests and percolation test for soil materials (based on CEN TC 292 procedures; 2005 F-DIS) ISO TC 190 SC7 WG6

These basic characterisation tests have a much wider applicability than the field of waste, where they were initially developed! Scenario

Description

Material

characterization

Controlling

factors

Modelling

leaching

Validation

verification

Evaluation

Conclusions